

UNIDAD N° 1 "CINEMÁTICA"

DOCENTE: ALEJANDRO FLORES

MOVIMIENTO RECTILÍNEO UNIFORMENTE. RETARDADO (M. R. U. R.)

CASOS PARTICULARES PARA Movimiento Rectilíneo Uniforme Retardado

Para un M. R. U. R., en el cual el móvil disminuye su velocidad hasta detenerse completamente; tenemos los siguientes casos:

TIEMPO MÁXIMO (t_{MAX}) : tiempo que tarda un móvil, desde que comienza a disminuir su velocidad, hasta detenerse completamente.

$$t_{MAX} = \left| \frac{v_i}{a} \right|$$

DISTANCIA MÁXIMA (d_{MAX}) : distancia que recorre un móvil, desde que comienza a disminuir su velocidad, detenerse hasta completamente.

$$d_{MAX} = \left| \frac{v_i^2}{2 \cdot a} \right|$$

V_i: velocidad inicial a: aceleración

IMPORTANTE

El símbolo representado en las fórmulas, que corresponde a dos barras verticales paralelas | |, indica el *valor absoluto (módulo)*. Esto significa, que aunque el resultado de la operación indicada en su interior sea negativo, finalmente <u>será considerado solo su valor numérico</u>, sin el signo.

EJEMPLO

Un camión viaja en línea recta por la carretera, a una *velocidad de 90 [km/h]*. Repentinamente, a 70 metros por delante de él, una vaca se atraviesa en su camino.

Por esta razón, el conductor activa los frenos para detener al camión, lo que produce una *aceleración de -5 [m/s^2]*.

- A) ¿Cuánto tarda el camión en detenerse completamente?
- **B)** ¿Qué distancia recorre el camión hasta detenerse completamente?

> ATENCIÓN!!!

ANTES DE RESOLVER EL EJERCICIO, DEBEMOS TRANSFORMAR LA UNIDAD DE MEDIDA PARA LA VELOCIDAD, DE [km/h] A [m/s].

EL PROCEDIMIENTO ES EL SIGUIENTE:

$$90\left[\frac{\mathrm{km}}{\mathrm{h}}\right] \div 3, 6 = 25\left[\frac{\mathrm{m}}{\mathrm{s}}\right]$$

DESARROLLO

A)

$$t_{M\acute{A}X} = \begin{vmatrix} v_i \\ a \end{vmatrix}$$

$$t_{M\acute{A}X} = \begin{vmatrix} 25 \\ -5 \end{vmatrix}$$

$$t_{M\acute{A}X} = |-5|$$

$$t_{M\acute{A}X} = 5[s]$$

Por lo tanto, el tiempo que pasó desde que el conductor activó los frenos hasta que el camión se detuvo completamente, fue de 5 [s].

DESARROLLO

B)

$$d_{MAX} = \begin{vmatrix} \sqrt{2} \\ 2 & \sqrt{2} \end{vmatrix}$$

$$d_{MAX} = \begin{vmatrix} 25^{2} \\ 2 & -5 \end{vmatrix}$$

$$d_{MAX} = \begin{vmatrix} 625 \\ -10 \end{vmatrix}$$

$$d_{MAX} = \begin{vmatrix} -62,5 \\ -62,5 \end{vmatrix}$$

$$d_{MAX} = 62,5 [m]$$

Por lo tanto, la distancia que recorre el camión desde que el conductor activó los frenos hasta que se detuvo completamente, fue de 62,5 [m].

<u>ACTIVIDAD</u>

Un tractor va por un camino rural a una velocidad de **63 (km/h)**, repentinamente un caballo se atraviesa en el camino a 40 metros por delante del tractor, por esta razón el chofer presiona los frenos para detener el móvil. Si al frenar se genera una aceleración de **-4 (m/s²)**, determine lo siguiente:

- 2A) ¿Cuánto tarda en detenerse el tractor? (4 PUNTOS)
- **2B)** ¿Qué distancia recorre el tractor hasta detenerse completamente? (4 PUNTOS)

RECUERDE QUE:

$$\left\lceil \frac{km}{h} \right\rceil \xrightarrow{\div 3,6} \left\lceil \frac{m}{s} \right\rceil$$