

"CALORY TEMPERATURA" PARTE III

DOCENTE: ALEJANDRO FLORES P.

OBJETIVOS DE APRENDIZAJE:

- Comprender la relación entre el calor absorbido/cedido por un cuerpo y la variación de temperatura que experimenta, mediante los conceptos de capacidad calórica y calor específico.
- Comprender los conceptos de capacidad calórica, calor específico y equilibrio térmico.
- Comprender, de manera cualitativa, la ley de enfriamiento de Newton.
- Reconocer las distintas fases de la materia y las variables que influyen para producir el cambio de fase.
- Conocer las leyes que rigen en cambio de fase.
- Aplicar los conceptos vistos para la resolución de problemas.

CAPACIDAD CALÓRICA (C)

- Es la cantidad de calor que un cuerpo o sustancia debe absorber o ceder para elevar o disminuir, respectivamente, su temperatura en 1°C.
- Mientras mayor sea la capacidad calórica del cuerpo, más costará calentarlo o enfriarlo.
- Mientras mayor sea la cantidad de sustancia (masa) o tamaño del cuerpo, mayor será su capacidad calórica.

En otras palabras, la capacidad calórica (\mathbf{C}) es la capacidad para absorber calor que posee un cuerpo o sustancia; se expresa como la relación entre el calor absorbido o cedido por un cuerpo o sustancia (\mathbf{Q}) y la variación de temperatura que éste experimenta ($\Delta \mathbf{T}$).

Para calcular el valor de la capacidad calórica (**C**), se utiliza la siguiente expresión:

$$C = \frac{Q}{\Delta T} = \frac{Q}{(T_f - T_i)}$$

C: capacidad calórica

Q: cantidad de calor, en calorías [cal]

ΔT: variación/cambio de temperatura, en grados Celsius

T_f: temperatura final, en grados Celsius [°C]

Ti: temperatura inicial, en grados Celsius [°C]

La unidad de medida para la capacidad calórica (C) es:

calorías	cal	
grados Celsius	°C	

Al aplicar la misma cantidad de calor (Q) a dos cuerpos o sustancias iguales pero de distinta masa, la mayor variación de temperatura (ΔT) la experimentará la menor masa.

¿Qué posee mayor capacidad calórica, el vaso con agua o la piscina con agua? La capacidad calórica de la piscina es mucho mayor que la del vaso con agua, por tener mayor masa de agua

CALOR ESPECÍFICO (c)

Se define como la capacidad calórica por unidad de masa. Cada material o sustancia tiene su propio calor específico.

El valor del *calor específico* (*c*) se puede calcular con la siguiente expresión matemática:

$$c = \frac{C}{m} \implies c = \frac{Q}{m \cdot \Delta T} = \frac{Q}{m \cdot (T_f - T_i)}$$

C: capacidad calórica

<mark>m:</mark> masa, en gramos [g]

Q: cantidad de calor, en calorías [cal]

ΔT: variación / cambio de temperatura, en grados Celsius [°C]

T_f: temperatura final, en grados Celsius [°C]

T_i: temperatura inicial, en grados Celsius [°C]

· La unidad de medida para la capacidad calórica (C) es:

calorías gramos · grados Celsius	[cal]
gramos · grados Celsius	$\left[\overline{\mathbf{g}\cdot {}^{\circ}\mathbf{C}}\right]$

¿Qué posee mayor calor específico, el agua del vaso o el agua de la piscina?

Ambas poseen el mismo calor específico, pues son el mismo material: agua

El calor específico del agua es:

$$1 \left[\frac{\text{cal}}{\text{g} \cdot {}^{\circ}\text{C}} \right]$$

CANTIDAD DE CALOR (Q)

Se define como la cantidad de energía (calor) cedida o absorbida por un cuerpo o sustancia, que posee una cierta masa, para que su temperatura varíe en un cierto número de grados.

El valor de la *cantidad de calor (Q)*, se puede calcular mediante la siguiente expresión matemática:

$$\mathbf{Q} = \mathbf{m} \times \mathbf{c} \times \Delta \mathbf{T} = \mathbf{m} \times \mathbf{c} \times (\mathbf{T_f} - \mathbf{T_i})$$

<mark>m:</mark> masa, en gramos [g]

c: calor específico, expresado en [cal/g ·°C]

∆T: variación / cambio de temperatura, en grados Celsius [°C]

T_f: temperatura final, en grados Celsius [°C]

T_i: temperatura inicial, en grados Celsius [°C]

· La unidad de medida para la cantidad de calor (Q) es:

calorías [cal]

IMPORTANTE RECORDAR

- Si el valor de la cantidad de calor (Q) es POSITIVO (+) significa que el cuerpo o sustancia ABSORBE CALOR (ENERGÍA) y, por lo tanto, su temperatura AUMENTARÁ.
- Si el valor de la cantidad de calor (Q) es NEGATIVO (-) significa que el cuerpo o sustancia CEDE CALOR (ENERGÍA) y, por lo tanto, su temperatura DISMINUIRÁ.

ABSORBE CALOR ₹ AUMENTA TEMPERATURA

CEDE CALOR ₹ DISMINUYE TEMPERATURA

EJEMPLO Nº 1

¿Cuál es la capacidad calórica (C) de un cuerpo que tiene una masa de 200 [g], que aumenta su temperatura en 40 [°C] cuando absorbe 4.000 [cal]?

DESARROLLO:

$$C = \frac{Q^2}{\Delta T} = \frac{4.000}{40} = 100 \left[\frac{\text{cal}}{^{\circ}\text{C}} \right]$$

El cuerpo, para poder elevar su temperatura en 1°C, debe absorber 100 [cal]

EJEMPLO N°2

¿Cuál es el calor específico (c) del cuerpo involucrado en el ejemplo anterior?

DESARROLLO:

$$c = \frac{C \longrightarrow 100}{m} = 0, 5 \left[\frac{\text{cal}}{\text{g} \cdot {}^{\circ}\text{C}} \right]$$

Para poder elevar la temperatura de 1 gramo de sustancia en 1°C, el cuerpo debe absorber 0,5 [cal]

EJEMPLO N°3

Un trozo de acero que tiene una masa de 400 [g] se encuentra a una temperatura de 20°C, la cual aumenta hasta llegar a los 100°C. Si también sabemos que el calor específico de dicho material es 0,12 $\left[\frac{\text{cal}}{\text{g}\cdot\text{°C}}\right]$, determine lo siguiente:

- A) Cantidad de calor [Q] absorbido
- B) Capacidad Calórica [C]

DESARROLLO

A) Cantidad de Calor (Q):

"Un trozo de acero que tiene una masa de 400 [g] se encuentra a una temperatura de 20°C la cual aumenta hasta llegar a los 100°C . Si también sabemos que el calor específico de dicho material es $0.12 \frac{\text{cal}}{\text{g} \cdot \text{c}^{\circ}\text{C}}$

$$Q = m \times c \times \Delta T$$

$$\Delta T = T_f - T_i$$

$$Q = 400 \times 0.12 \times 80$$

$$\Delta T = 100 - 20$$

$$Q = 3.840 [cal]$$

$$\Delta T = 80^{\circ}C$$

El trozo de acero, para poder elevar su temperatura desde 20°C a 100°C, absorbió 3.840 [cal]

DESARROLLO

B) Capacidad Calórica (C):

$$C = \frac{Q}{\Delta T} = \frac{Q}{(T_f - T_i)}$$

$$C = \frac{3.840}{(100 - 20)}$$

$$C = \frac{3.840}{80}$$

$$C = 48 \begin{bmatrix} \frac{\text{cal}}{\text{°C}} \end{bmatrix}$$

El trozo de acero, para poder elevar su temperatura en 1°C, debe absorber 48 [cal]

EQUILIBRIO TÉRMICO

Al poner en contacto (o mezclar) dos cuerpos (o sustancias) a distinta temperatura, fluirá calor desde el cuerpo más caliente (quien cederá calor, enfriándose) hacia el cuerpo más frío (quien absorberá calor, calentándose) hasta que sus temperaturas se igualen; cuando esto suceda, el sistema se encontrará en EQUILIBRIO TÉRMICO.

