

GUÍA 02 TRABAJO EN CASA

Nombre:	Λ° Δ	23/03/2020
Nombre:	4 A	23/03/2020

<u>Observación:</u> Guía de Aprendizaje acerca de Intervalos. Leer y desarrollar. También de la página del Texto Escolar, aparece el contenido y ejercicios, los cuales deben de realizar, de la página 26 a la 29.

INTERVALOS LIMITADOS

Entre das puntos de la recta numérica correspondientes a dos números reales diferentes, existen otros infinitos números reales.

Esto hace que pensemos en subconjuntos de R que en adelante llamaremos INTERVALOS.

Un INTERVALO en la recta numérica podemos graficarlo así:

¿Cuántos números naturales existen entre -1 y + 4

incluyendo a éstos últimos?.....

¿Cuántos números enteros existen entre -2 y + 5 incluyendo a éstos últimos?

Pero... ¿cuántos números reales existen entre -2 y + 5 incluyendo a éstos últimos?

Estos infinitos números reales pertenecen a un subconjunto de R llamado INTERVALO, cuyas extremos son -2 y +4.

Un INTERVALO puede o no incluir a los extremos; como también, un INTERVALO puede incluir sólo a un extremo: según esto podemos tener entonces diversos tipos de intervalos que luego pasaremos a estudiar; pero antes generalicemos la idea de INTERVALO:

Un INTERVALO es un subconjunto de R, cuyos elementos x están comprendidos entre los EXTREMOS a y b que también son números reales que pueden o no estar incluidos en el intervalo.

TIPOS DE INTERVALOS

Puede ser limitados o ilimitados.

INTERVALOS LIMITADOS.

 Si incluimos a los extremos el INTERVALO es CERRADO. Gráficamente

donde x representa a cualquiera de los elementos del intervalo. Observa que los extremos a y b están resaltados con puntos negros lo cual significa que se incluye a los extremos.

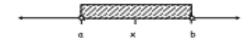
Representación simbólica : x e [a:b]

Como conjunto: $P = \{x \in \mathbb{R} / a \le x \le b\}$

Ejemplo:

Representar el intervalo de números reales x comprendido entre - 5 y +1 incluyendo a estos extremos.

Gráficamente:



Representación simbólica : x e [- 5 ; 1]

Come conjunte: $P = \{x \in R / -5 \le x \le 1\}$

 Si no incluimos a los extremos, el INTERVALO es ABIERTO.

Gráficamente:

En este caso como los extremos a y b no pertenecen al intervalo, éstos se representan en la recta numérica por dos círculos pequeños.

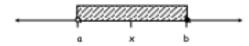
Representación simbólica : x ∈)a ; b(

Como conjunto: $P = \{x \in R \mid a < x < b\}$

Ejemplo:

Representar el intervalo de números reales x comprendido entre - 7 y - 2 sin incluir a estos extremos.

Gráficamente:



Representación simbólica: x ∈]-7; -2[

Como conjunto: $P = \{x \in \mathbb{R} / -7 < x < -2 \}$

- Si incluimos sólo a uno de los extremos, el INTERVALO es SEMIABIERTO.
 - Abierto por la izquierda, cerrado por la derecha.-

Gráficamente:

Aquí, sólo b pertenece al intervalo, no así el extremo a.

Representación simbólica : x ∈]a;b]

Como conjunto: $P = \{x \in \mathbb{R} / a < x \le b\}$

 Abierto por la derecha, cerrado por la izquierda.-

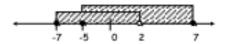
Gráficamente:

En este caso, sólo a pertenece al intervalo, no así el extremo b.

Representación simbólica : x e [a;b[

Como conjunto: $P = \{x \in R / a \le x \le b\}$

PROBLEMAS RESUELTOS


1. Dados los intervalos :

$$A = [-7; 2[yB = [-5; 7],$$

Hollar a) $A \cup B$ b) $A \cap B$

Salución:

Un intervalo es un conjunto. En este caso es posible el cálculo de A U B y A ∩ B recordando que un elemento de la UNIÓN pertenece a A, o a B, o a ambos, y un elemento de la INTERSECCIÓN pertenece a ambas conjuntos.

Graficando los intervalos dados en la recta numérica:


Del gráfico se nota que:

- a) A∪B = [-7;7]
- b) A \cap B = [-5; 2]
- 2. Dados los intervalos :

Solución:

Recordemos que los elementos que pertenecen a la diferencia A - B, pertenecen a A pero no pertenecen a B, Asimismo, los elementos que pertenecen a B - A, pertenecen a B pero no pertenecen a A.

Graficando los intervalos dados en la recta numérica:

Del gráfico se nota que:

- a) A-B =]-3;5[∪ [8;12]
- b) B-A = Ø

EJERCICIOS DE APLICACIÓN

A. Completa el siguiente cuadro, graficando en la recta numérica cada intervalo dado:

Representación simbólica del intervalo	Intervalo como conjunto
x ∈ [- 15; 3]	{x∈ R/-15≤ x≤3}
	{x∈ R/-8 <x≤ 7}<="" td=""></x≤>
x ∈]5;9[
	{x∈ R/-2≤x≤ 4}
x ∈ [-4;0[
	{x ∈ R/-8≤x<-3}
x ∈ [- 12 ; - 3]	
	(x∈ R / 3 < x < 7)
x ∈] - 3:1[
	{x∈ R / -5 < x ≤ -1}

B. Dados los siguientes intervalos efectuar las operaciones indicadas:

(1) A UB	(2) B - A	(3) (A - C) ∩ D
(4) A ∩B	(5) B∪C	(6) (C-A) UB
(7) A ∩ D	(8) CUD	(9) (A - C) - B
(10) A - D	(11) B ∩ D	(12) B ∪ (C ∩ A)
(13) D - A	(14) B - D	(15) (A A B) - C
(16) A - B	(17) C Δ D	(18) (A ∪ b) ∩ ¢

DESAFIO

A) Dados los siguientes intervalos efectuar las operaciones indicadas.

A = [- 3 , 2] B =] - 4;1[C =] - 5; - 2] ; D = [3, 5]E = 10;21 F = [-1; 4 [A u F $A \cup B$ 11) $A \cap B$ 12) F-E A - B (E ∩ C) - A 3) 13) B - A 4) 14) (B ∩ D) - C 5) AUC 15) (A n E) - (A n C) 6) Anc 16) $(B-A) \cup (A-B)$ A - C 7) 17) $B \Delta A$ C-A (E-F) AD 8) 18) AUD 19) $(A \cap D) - (C \Delta B)$ [(A - B) ∪ C]∆ 10) $A \cap D$ 20)

- B) Desarrolla cada uno de los problemas propuestos:
- 1. En la siguiente recta numérica se representan dos intervalos A y B. Encontrar el intervalo A

- a) {2} d) [-2;6[
- b) [-2,2] c)]-2;2[e) Ø
- Del problema anterior calcular A ∪ B
 - a) { 2 }
- b)[-2,2] c)]-2;6]

c)]-2;6[

- d) [-2:6[
- e) Ø
- 3. Del problema uno calcular A B
 - b)[-2,6] a) { - 2 } d) [2:6[e) Ø
- 4. ¿Cuántos números enteros existen en el intervalo 1-7:71
 - a) 5
- b) 7
- c) 14

- d) 13
- e) N.A.
- Sabiendo que: A = [-7,11] B = [-2,8[y C =] - 3 , 12 [Hallar (A - C) ∩ (B - A)
- 6. Representa los siguientes intervalos como conjuntos:

a)
$$x \in [-7, 0]$$

b)
$$x \in [-3, 1]$$

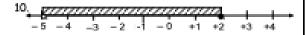
d)
$$x \in]-5,4[$$

g)
$$x \in [-1; 12]$$

h)
$$x \in [0, 11]$$

 Si " n " no es mayor que 10 y " n" no es menor que 4. ¿Cuál de las siguientes proposiciones no es verdadera?

e)
$$4 < n < 10$$

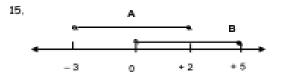

8. Si
$$x \in \{-2:3\}$$
 : $y \in \{-1:4\}$

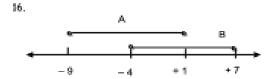
9. Si
$$x \in [-3; 4]$$
; $y \in [-2; 6]$

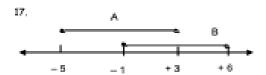
- a) čCuál es el máximo valor de x , y?
- b) ¿Cuál es el mínimo valor de x , y?

C. En los problemas del 10 al 14, escribir el intervalo correspondiente a la figura propuesta

h







En la siguientes rectas numéricas se representan dos intervalos A y B. Encontrar las siguientes intervalos en cada uno de ellos:

F. Completa el siguiente cuadro, graficando en la recta numérica cada intervalo dado:

Representación simbólica del intervalo	Intervalo como conjunto
x ∈] - 5 : 2]	
	{x ∈ R / - 1 < x ≤ 4}
x c [3:11]	
	{x ∈ R / 0 ≤ x < 7}
x e [-3:0[
	{x ∈ R / -5 < x < -1}
x ∈] - 4;3[
	{x ∈ R / 2 ≤ x < 8}
×∈[-7;-2]	
	{x ∈ R / -7≤x≤-3}